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ABSTRACT

The purpose of this study was the evaluation of a computer algorithm for the

automated detection of endocardial and epicardial boundaries of the left ventricle in

time series of short-axis magnetic resonance images based on an Active Appearance

Motion Model (AAMM). In 20 short-axis MR examinations, manual contours were

defined in multiple temporal frames (from end-diastole to end-systole) in multiple

slices from base to apex. Using a leave-one-out procedure, the image data and

contours were used to build 20 different AAMMs giving a statistical description of the

ventricular shape, gray value appearance, and cardiac motion patterns in the training

set. Automated contour detection was performed by iteratively deforming the AAMM

within statistically allowed limits until an optimal match was found between the

deformed AAMM and the underlying image data of the left-out subject. Global

ventricular function results derived from automatically detected contours were

compared with results obtained from manually traced boundaries. The AAMM

contour detection method was successful in 17 of 20 studies. The three failures were

excluded from further statistical analysis. Automated contour detection resulted in
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small, but statistically nonsignificant, underestimations of ventricular volumes and

mass: differences for end-diastolic volume were 0.3%±12.0%, for end-systolic volume

2.0%±23.4% and for left ventricular myocardial mass 0.73%±14.9% (mean±SD). An

excellent agreement was observed in the ejection fraction: difference of 0.1%±6.7%.

In conclusion, the presented fully automated contour detection method provides

assessment of quantitative global function that is comparable to manual analysis.

Key Words: Magnetic resonance imaging; Global ventricular function; Automated

analysis.

INTRODUCTION

Accurate quantification of left ventricular (LV)

dimensions is important in the diagnosis of cardiac

pathologies and the monitoring of the effect of

treatment in various cardiac diseases. Cardiac magnetic

resonance imaging (MRI) allows accurate and repro-

ducible measurements of global LV dimensions such as

the end-diastolic (ED) and end-systolic (ES) chamber

volumes, the ejection fraction and LV mass (Higgins

and Sakuma, 1996; Semelka et al., 1990). The

introduction of Steady State Free Precession (SSFP)

imaging technique has resulted in significantly im-

proved endocardial boundary definition, especially in

regions of low flow, which were often poorly

visualized by the older MRI techniques (Carr et al.,

2001; Barkhausen et al., 2001; Lee et al., 2002). It has

been shown that the SSFP yields an improvement of

intra- and interobserver agreement in the assessment of

global ventricular parameters when using manually

traced myocardial boundaries (Plein et al., 2001). In

addition, it was shown that SSPF yields better

performance of automated contour detection software

(Plein et al., 2001).

Despite these technical advances in MR pulse

sequence development, quantification of the ventricular

function parameters is still very much reliant on

manual tracing of endocardial and epicardial contours

in a large number of images. This postprocessing

procedure adds a significant amount of time to the MR

examination and leads to intra- and interobserver

variabilities. Recently, the concept of Active Appear-

ance Models was introduced as a new framework for

automated detection of object boundaries in images

(Mitchell et al., 2001). In previous studies we adapted

this AAM technique for the detection of LV and right

ventricular (RV) contours in two-dimensional (2D)

images. In the current work, we extended the AAM

method to operate on temporal sequences of short-axis

images acquired by using SSFP MRI.

The purpose of the present study was to develop

and validate a new automated method for the detection

of endocardial and epicardial contours in temporal

sequences of short-axis MR images. The proposed

method is training based: it uses available time series

of images with expert drawn contours to build a

statistical model of the shape, motion pattern, and

appearance (gray value in the images) of the left

ventricle in time sequences as seen in short-axis MR

images. Once trained on a sufficiently large set of

patient data, the statistical model is used to automati-

cally find the cardiac boundaries in new image series.

During this step, the gray value information in a

complete temporal sequence of images from end-

diastole to end-systole is used, which guarantees that

the method finds a consistent time-continuous segmen-

tation result over the time sequence. The results of

automated contour detection were compared with

results derived from manual contour tracings.

MATERIALS AND METHODS

Study Population

Eighteen cardiac patients (14 male, 4 female) and

two healthy volunteers (all male) without history of

cardiac disease were recruited for the study. The mean

age of the subjects was 56 years (range 16–76) and

mean weight 97 kg (range 54–150). The patients

suffered from several pathologies including heart

failure (n = 8), hypertrophic cardiomyopathy (n = 4),

transplant follow-up (n = 3), chest pain or angina

(n = 3). All study subjects gave written informed con-

sent to participate in this study.

Magnetic Resonance Imaging

Patients and volunteers underwent MR imaging

using a 1.5-T MR system (Sonata; Siemens Medical

Systems, Erlangen, Germany). After localizing planes

were obtained, a stack of short-axis images was

acquired by covering the complete left ventricle from

apex to base using imaging sections of 6-mm thickness
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and an inter-section gap of 4 mm. MRI scanning

parameters were as follows: TR = 3.1 ms, TE = 1.6 ms,

flip angle = 55�, receiver bandwidth = 930 Hz/pixel,

matrix size = 192�256 and FOV = 262�350 mm2.

Automated Contour
Detection Algorithm

Introduction to Active

Appearance Models

The newly developed automated contour detection

algorithm presented in this article is based on Active

Appearance Models (AAM) (Cootes et al., 1999). An

AAM is a statistical model that can be used to describe

the appearance of short-axis MR images, including its

typical variations, derived from a training set of

example images. In the training set of images, the

definition of the cardiac boundaries needs to be

available via manually defined contours. An AAM

consists of the mean appearance and a number of

eigenvariations, which describe the variation in image

appearance in the training set. Appearance in this

context is a combination of the shape of the ventricle

as seen in short-axis images and the gray value

information contained in an MR image. For application

of an AAM for detection of the LV contours only an

image patch containing the LV plus its close

surroundings is included in the AAM. By deforming

the mean appearance along the eigenvariations, new

’realistic’ cardiac MR images can be generated which

were not included in the training set, but which are

plausible in a statistical sense. To use an AAM for

contour detection in cardiac MR images, this deform-

ing procedure is applied to find an optimal match

between the deformed AAM and the underlying image.

The matching criterion used in our application was the

root-mean-square difference between the image pixels

of the MR image and the model synthesized image.

Extension of AAM with Motion

Information: AAMM

In previous work, we demonstrated the usefulness

of AAM contour detection for the segmentation of the

LV and RV boundaries in short-axis MR images

(Mitchell et al., 2001). This particular algorithm was

limited to single 2D images, and the validity of the

method was demonstrated on midventricular end-

diastolic images only. In this work, an extension of

the AAM contour detection was developed which

performs modeling and contour detection for complete

time series of short-axis MR images. Because the

method also includes information about the cardiac

motion of the left ventricle, the method is called an

Active Appearance Motion Model (AAMM). The

rationale for this new approach is that we hypothesize

that by modeling the image information contained in a

time series of images, the automated segmentation

procedure will be more robust because all image data

are used during the detection procedure. By its nature,

the segmentation result using AAMM contour detection

will represent a time-continuous deformation of the

endocardial and epicardial boundaries.

To apply AAMM contour detection for the

detection of endocardial and epicardial contours in

short-axis MR image series, two steps need to be

carried out: 1) building an AAMM using available

image data with manually defined expert contours and

2) matching an AAMM to a new time series of images

by deforming the AAMM until it fits on the image

data. These two procedures are explained in more

detail in the following sections.

Building an Active Appearance

Motion Model

In the AAMM, the appearance of the left ventricle

is modeled for the systolic phase of the cardiac cycle

by considering the image frames from ED to ES. An

image sequence is normalized to a fixed number of

frames T (6) using a nearest neighbor interpolation, so

that the ED and ES frames map to the same frame

number (1 and 6, respectively). In the training set, the

endocardial and epicardial contours are defined man-

ually by an independent expert. In each time frame, the

image appearance of the left ventricle is modeled as an

appearance vector describing the pixel intensity values

in an image patch spanned by the manual contour. The

vectors for shape points and image patch intensities for

each time frame are concatenated and ordered accord-

ing to their phase number (1–6). Only imaging

sections in which the LV myocardium was visualized

for the full circumference in all image frames were

included in the model. Therefore, often one basal and

in a few cases an apical section needed to be excluded

from the training set of image series. By applying a

principal component analysis on the training samples,

the mean and the most characteristic eigenvariations

(modes of variation) of appearance vectors are derived.

The resulting AAM describes the average motion

pattern that is associated with the cardiac contraction

as seen in short-axis cardiac MR images, including the

most characteristic anatomical and functional variations

in the cardiac cycle (Fig. 1). In the current im-

plementation, no distinction was made between slice
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levels: apical, mid, and basal slices were combined in

a single model.

Matching an Active Appearance

Motion Model

For each study, the only manual interaction

required is the definition of the ES time frame; the

first time frame is assumed to represent ED. The

AAMM is then positioned at the center of the LV using

an automatically detected LV center point (van der

Geest et al., 1997). For each slice location, six evenly

spaced frames from ED to ES are processed simulta-

neously. Contour detection is performed by automati-

cally adjusting the AAMM parameters until the best fit

is found between the deformed AAMM and the

underlying image data using an iterative procedure.

In the first few iterations, the pose of the average

appearance is modified by using translation, rotation,

and scaling. In the following iterations, the appearance

is modified by changing the AAMM parameters within

±3 standard deviations. This iterative process continues

until a minimum gray value difference (expressed as

the root-mean-square error) is obtained between the

model and the six time frames. The matching process

results in the endocardial and epicardial contours for all

six time frames.

Manual Analysis

Experienced observers manually traced endocardial

and epicardial contours in all cardiac phases and all

slice levels in which the myocardium was visual-

ized. Four observers performed the contour tracing,

each of them analyzing five examinations. The en-

docardial boundaries were traced around the trabecu-

lations and papillary muscles such that a smooth

convex-shaped endocardial contour resulted that exhib-

its a time-continuous deformation over the cardiac

cycle (Fig. 2A). Epicardial contours were traced at the

outer boundary of the myocardium inside epicardial fat

when present. Images at the base of the heart showing

myocardium for less than 50% along its circumference

were excluded from analysis. To avoid inconsisten-

cies in image interpretation between observers, one

of the observers reviewed all segmentation results and

made adjustments to the contours if deemed necessary.

In 10 randomly chosen subjects, manual tracing was

carried out by a second observer to assess interobserver

variability. The quantitative ventricular function re-

sults derived from the manual tracings served as

gold standard.

Figure 2. (A) Example of a time series of images from ED to

ES with manually defined endocardial and epicardial contours.

The endocardial contours are traced around the trabeculations

and papillary muscles, which results in a time-continuous

motion pattern of the endocardial boundary. (B) Automatically

detected contours generated by the AAMM contour detection

method. The contours are comparable to the manually traced

boundaries illustrated in (A).

Figure 1. Illustration of a trained AAMM with the most

important modes of variation. The top row shows the average

appearance of the systolic contraction from ED to ES as seen

in the short-axis MR images used to construct the AAMM. The

middle and bottom rows illustrate the most significant mode of

variation represented by the average AAMM plus or minus

three times the standard deviation, respectively.
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Comparison Between Automatically
and Manually Defined Contours

For evaluation of the performance of the AAMM

contour detection methods, a leave-one-subject-out

approach was used. For each study subject, automated

detection was carried out by using an AAMM that was

trained on the remaining 19 subjects. The LV volumes

were assessed from the available contours using

Simpson’s rule. The quantitative global ventricular

function results derived from the automatically

detected contours were compared with the results

derived from manual contour tracings. The following

parameters were included in this comparison: EDV,

ESV, EF, and LV mass. The EDV was defined as the

volume of the LV in the first time frame; ESV was

defined as the smallest volume of the LV; EF was

defined as 100%� (EDV–ESV)/EDV, and LV mass

was assessed as the average volume of the myocardium

in the ED and ES phases multiplied by the specific

density of myocardial tissue (1.05 g/mL). For each

parameter, the agreement between manual and AAM

results was analyzed by computing the mean and

standard deviation of the paired differences.

STATISTICAL ANALYSIS

Values are expressed as means±SD. The paired

Student’s t-test was used to assess statistical signifi-

cance of the differences for each parameter between

manual and automated analysis. A p value < 0.05 was

considered statistically significant. Parameters obtained

by manual and automated analysis were compared by

using linear regression analysis and by calculating

absolute and relative differences between methods

according to the methods of Bland and Altman (Bland

and Altman, 1986).

RESULTS

Manual Analysis Results

The number of slices included per study varied

between 4 and 9 (average 6.7; SD 1.2). The phase

number of ES varied between 6 and 10 (average 7.7;

SD 1.3). Endocardial and epicardial contours were

manually traced in the slices covering the left ventricle

in the phases from ED to ES, resulting in contour

tracings in 1010 images. Global function results

derived from the manual tracings are summarized in

Table 1. The interobserver variabilities for EDV were

3.1%±4.8% for ESV 2.4%±14.8%, for EF 2.9%±7.2%,

and for LVM 2.1%±8.7% (Table 2). Limits of

agreement between two observers using manual

analysis for EDV were between �6.5% and +12.7%;

for ESV between �27.2% and +32%; for EF between

�11.5% and +17.3%; and for LVM between �15.3%

and +19.5%.

AAM Contour Detection

The 20 available studies were used to generate 20

different AAMM models; in each model the image data

of one subject was left out, and the corresponding

AAM model was used for the automated detection of

the left-out subject. Figure 1 gives an example of an

AAMM model. It shows the average appearance of the

systolic contraction in a short-axis MR image,

including the first two most significant modes of

variation. Figure 2B shows an example of automated

contour detection results for a midventricular time

series of images. The contours detected are very

similar to the manually drawn contours for this series

shown in Fig. 2A.

Table 1. Global ventricular function parameters

derived from manually defined contours in the study

population of 20 subjects.

Parameter Mean SD

EDV (mL) 161 86

ESV (mL) 104 95

EF (%) 46 19

LVM (g) 126 52

Abbreviations: EDV-end-diastolic volume; ESV-end-

systolic volume; EF-ejection fraction; LVM-left ven-

tricular mass (average of ED and ES values).

Table 2. Interobserver variability for quantification of global

LV parameters using manual contour tracing assessed from 10

randomly selected examination.

Obs1–Obs2 (abs) Obs1–Obs2 (%)

EDV 4.2±7.7 mL 3.1±4.8

ESV 0.5±6.7 mL 2.4±14.8

EF 2.9±7.2a

LVM 2.2±9.0 g 2.1±8.7

Abbreviations: EDV-end-diastolic volume; ESV-end-systolic

volume; EF-ejection fraction; LVM-left ventricular mass

(average of ED and ES values).
aEF differences are only presented in the second column

because it already represents a relative quantity.
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Automated AAMM contour detection was per-

formed successfully in 17 of 20 examinations (Fig. 4).

In three studies the automated contour detection

procedure failed to converge to a correct segmenta-

tion result. Visual inspection of these three studies

revealed distinct features not seen in any of the

other examinations:

1. In one examination, a bright rim of pericardial

fluid (thickness 4–6 mm) was seen at the

lateral wall.

2. The second study was a patient with a

severely dilated ventricle with a thin ventric-

ular wall and low ejection fraction (EDV 290

mL; average ED wall thickness 5.9 mm;

EF 11%).

3. The third study was a patient with severe

hypertrophic cardiomyopathy (LV mass 252 g;

local ED septal wall thickness of 26 mm;

EF 79%).

The results of these three studies were excluded

from the statistical analysis. For the remaining 17

studies, the comparative results between global func-

tions measurements obtained by either manual contour

tracing and automated contour detection are listed in

Table 3. For all the parameters, the differences were

found to be statistically nonsignificant. Linear regres-

sion analysis demonstrated an excellent linear correla-

tion between methods with r values ranging from 0.96

Figure 3. Graphical presentation of error of automated

contour detection (using manual traced contours as the

reference) compared with interobserver variability for manual

contour tracing. The error bar shows the standard deviation of

the paired differences between measurements for the given

global function parameters. Abbreviations: EDV: end-diastolic

volume; ESV: end-systolic volume; EF: ejection fraction;

LVM: left ventricular mass (average of ED and ES values).

Table 3. Global function results obtained by either manual or automated contour detection.

EDV ESV EF LVM

Manual Auto Manual Auto Manual Auto Manual Auto

1 63 71 24 31 63 57 57 43

2 171 183 121 118 29 36 147 139

3 142 135 91 82 36 39 102 104

4 81 60 39 23 52 62 90 109

5 109 125 33 43 70 66 142 169

6 209 207 140 154 33 26 145 125

7 77 77 34 34 56 56 62 49

8 72 63 38 30 47 52 47 56

9 112 114 52 43 54 62 105 131

10 173 157 94 85 46 46 123 134

11 143 143 54 62 62 57 136 121

12 300 329 217 281 28 15 217 210

13 160 175 104 115 35 34 98 105

14 146 148 81 69 44 53 121 114

15 127 138 54 53 58 61 120 126

16 127 145 64 80 50 45 96 96

17 418 408 336 361 20 11 225 221

Mean 155 157 93 98 46 46 120 121

SD 89 91 80 92 14 17 49 49

Abbreviations: EDV-end-diastolic volume; ESV-end-systolic volume; EF-ejection fraction; LVM-left ventricular mass (average of

ED and ES values).

Only those examinations are included in which the AAMM contour detection converged to a valid match.
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to 0.99 ( p < 0.01). Bland-Altman plots comparing the

manually obtained and automatically obtained global

function parameters are presented in Fig. 4. In these

plots, the differences between the methods are

displayed as relative errors. There was a very small

statistically nonsignificant bias of the automatically

determined parameters. The bias for the global function

parameters was never higher than 2% (Table 4). The

95% limits of agreement for the assessment of global

function parameters using AAM contour detection

compared to manual analysis were for EDV between

�23.8 and +23.3%; for ESV between �43.8% and

+47.8%; for EF between �13.0 and +13.3%; and for

LVM between �28.5 and +29.9%. In Fig. 3, a

graphical presentation is given of the differences

between automated and manual analysis and observer

variabilities using manual analysis.

Computation time for the detection of contours in

a complete time sequence of images from ED to ES

was less than 3 sec by using a 1 GHz PC operating

under the Linux operating system. The total computa-

tion time for all slices from apex to base was less than

20 seconds per examination.

DISCUSSION

Automated contour detection is a prerequisite for

time-efficient quantification of LV function from

multislice short-axis cine MRI studies. Developing an

accurate and robust detection algorithm is a challenging

Figure 4. Bland–Altman plots for comparative analysis of global ventricular function results derived from either manually or

automatically detected contours. The limits of agreement between the two methods (i.e., mean difference �2 SD) are given by the

solid horizontal lines. Abbreviations: EDV: end-diastolic volume; ESV: end-systolic volume; EF: ejection fraction; LVM: left

ventricular mass (average of ED and ES values). (View this art in color at www.dekker.com.)

Table 4. Comparison between manual and automated global

function results for those examinations in which the AAMM

contour detection converged to a valid match (n=17).

Auto-man (abs) Auto-man (%)

EDV �2.9±13.2 mL �0.3±12.0

ESV �5.1±18.9 mL �2.0±23.4

EF 0.1±6.7a

LVM �1.2±14.1 g �0.7±14.9

aEF differences are only presented in the second column

because it already represents a relative quantity.
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problem due to large variations in patient characteristics

and features present in the images. It requires knowledge

about the MR image sequence used and knowledge about

the anatomy of the heart and neighboring structures.

Only trained observers are capable to reliably and

reproducibly trace the myocardial contours. It is often

helpful to visualize the images in a cine mode to

correctly interpret the structures seen in the images.

When image information is unreliable or inconclusive,

the final judgment is based on a model derived from

previous experience.

The presented AAMM contour detection technique

is trained by using previously obtained MRI studies

with expert drawn contours. The generated AAMM

contains information about the shape of the left

ventricle, the motion and deformation pattern of the

left ventricle, and the gray value distribution in MR

images. By restricting the deformation of the AAMM

to statistically defined limits, each deformed AAMM

represents a plausible segmentation result. Therefore,

the detection algorithm uses similar a priori knowledge

as a human observer. Because the contour detection is

based on the minimization of the gray value difference

between the actual image data of a whole time series of

images and the deformed representation of the AAMM,

the method is relatively insensitive to false edges

present in the images. This is in contrast to other

contour detection approaches, which rely on local

image features such as gray value edges (Baldy et al.,

1994; Lalande et al., 1999; van der Geest et al., 1997).

An additional advantage of the presented automated

method is that it exploits all image information

contained in a time-series of images during detection

of the contours. This is in accordance with how manual

tracing is carried out, since often images are displayed

in a cine-mode in order to correctly and consistently

interpret the structures seen in the images. Basic

physiology dictates that myocardial motion and defor-

mation of the ventricular wall should constitute a time-

continuous pattern. The presented algorithm fulfills this

constraint, because the detected myocardial boundaries

are smooth and represent a time-continuous pattern.

The contour detection method was evaluated on

clinical cases from various cardiac pathologies. Within

the study population the ejection fraction ranged from

11% to 66%; the LV mass ranged from 43 g to 221 g.

Nevertheless, automated contour detection provided

global ventricular function results comparable with

results obtained by manual analysis. No statistically

significant differences were found between results

obtained by manual and automated analysis. With a

processing time of less than 20 sec for an examination,

the contour detection method proved to be time

efficient. Because user interaction was limited to

manually defining the ES time frame, observer bias

is expected to be very much limited.

Limitations

This study has a number of limitations. In three

MR examinations, the automated contour detection was

unable to detect reliable contours. Inspection of these

examinations revealed that in each of these studies,

distinct features were present that were not seen in the

other studies. Therefore, the correct segmentation for

those studies could not be obtained by deforming the

AAMM. The occurrence of these failures stresses the

importance of using a sufficient number of represen-

tative MR studies for training the AAMM. It is

assumed that by increasing the number of studies to

train the AAMM, the descriptive power of the

model increases and the failure rate will be reduced

considerably. Currently, we have not yet studied the

optimal size of the training set and the optimal

distribution of various pathologies within the

training set.

The current implementation of the method can

only be applied to imaging slices where a complete

circumference of myocardium is present in all time

frames. In most patients, this condition is not fulfilled

for the most basal slice location of the ED frame,

because of through-plane motion during the systolic

phase, the myocardial tissue seen in the ED phase may

move out of the imaging plane during contraction.

Therefore, some imaging sections could not be

evaluated by using the proposed contour detection

method. A possible solution for this problem could

be to use a single-phase AAM for the most basal

imaging section of the ED phase, as presented by

Mitchell et al. (Mitchell et al. 2001).

Future Studies

To further investigate the strengths and limitations

of the presented AAMM contour detection technique

and to explore possibilities to improve the method,

further studies are required. As already mentioned, it is

needed to collect additional clinical MR examinations

with manually drawn contours to investigate the

optimal size for the AAMM training set. In addition,

it is relevant to study whether clinical data of patients

with different pathologies should be incorporated in a

single model or whether it proves more successful to

have separate models for specific pathologies. A

similar question arises when it comes to inclusion of

image data acquired with slightly different imaging
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protocols, or even images obtained from different MR

systems in a single model or separate models. In the

three cases that were excluded from statistical analysis,

distinct features were present, explaining why the

AAMM contour detection did not perform successfully.

However, to understand the sources of the differences

between AAMM and manual contour detection in the

remaining 17 subjects, further investigation into the

sources of these differences are warranted.

CONCLUSION

A fully automated contour detection method is

presented which provides quantitative indices of global

function that are comparable to manual analysis. The

method can be applied to images acquired with

different MR systems and pulse sequences by retrain-

ing the AAMM using MR images with expert drawn

contours available. Further studies are needed to

establish the optimal size and distribution of patients

with varying cardiac pathologies in the training set

used to build the AAMM.
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