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ABSTRACT

A high resolution, noninvasive approach to quantify atherosclerotic plaque in the peripheral

vasculature could have significant clinical and research utility. Seventeen patients with periph-

eral arterial disease (PAD) were studied in a 1.5T CMR scanner. Atherosclerotic plaque volume

in the superficial femoral artery was measured and interobserver, intraobserver, and test-retest

variability determined. Nineteen vessels were studied with mean acquisition time of 13.1 min-

utes per vessel. Mean plaque volume was 7.27 ± 3.73 cm3. Intra-observer intraclass correlation

was R = 0.997, inter-observer was R = 0.987, and test-retest reproducibility was R = 0.996. Thus,

high resolution measurement of plaque volume in PAD is reliable and reproducible.

INTRODUCTION

Peripheral arterial disease (PAD) is an increasingly common

condition characterized by atherosclerotic obstruction of the ar-

teries supplying the lower limbs. Although PAD is now rec-

ognized as an important manifestation of systemic atheroscle-

rosis, it remains underdiagnosed and undertreated (1). While

co-existing coronary and cerebrovascular disease is responsible

for nearly 75% of deaths among PAD patients (2–4), morbidity

directly attributable to peripheral vascular obstruction is sub-

stantial (5). Of the few therapies proven beneficial in the treat-
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ment of PAD, little is understood about their mechanisms of

benefit (6–8).

The ankle-brachial index is an excellent test for identifying

peripheral arterial obstruction (1) but limited in its utility for

assessing disease severity and predicting clinical events (9). Di-

rect measurement of plaque and peripheral arterial remodeling

may be better suited for defining disease burden and predicting

clinical progression. Because of the inherent limitations of lu-

menographic techniques in evaluating and assessing the extent

of atheroma (10, 11), novel approaches for directly evaluating

the vessel wall are needed. Intravascular ultrasound (IVUS) is

currently the diagnostic standard for plaque quantification, but

the technique is expensive, invasive, and poorly suited for the

peripheral circulation (12).

With its safety record, flexibility, and excellent spatial reso-

lution, cardiovascular magnetic resonance (CMR) could be an

ideal approach for the noninvasive assessment of atheroscle-

rotic plaque burden in the peripheral circulation. While CMR

has been employed for measuring and characterizing plaque in

the coronary (13, 14), carotid (15, 16), and aortic circulations

(15–17), few studies have rigorously investigated its role in PAD

(12, 18). The goal of this study was to develop and refine a prac-

tical technique for quantifying plaque in the superficial femoral

artery (SFA) of patients with mild to moderate PAD that would

allow for determination of plaque burden and noninvasive, serial

monitoring of plaque progression in patients treated with both

established and novel therapies.
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METHODS

Study population

Patients between the ages of 30–85 years with symptoms of

intermittent claudication without critical limb ischemia and an

ankle-brachial index (ABI) between 0.4 and 0.9 were eligible for

this study. The study was carried out in accordance with a pro-

tocol that was approved by the Human Investigation Committee

at the University of Virginia Health System and all participants

signed informed consent.

Protocol

All subjects were placed supine in a 1.5T MR scanner

(Siemens Medical Solutions, Erlangen, Germany) with the calf

at the isocenter of the magnet. Monitoring of the electrocar-

diogram and blood pressure was performed with an InVivo

3155MVS (Intermagnetics Companies, Orlando, FL) through-

out the study. A custom-built flexible, linear four-element

(10 cm × 10 cm square element) surface coil array (Nova Med-

ical, Wilmington, MA) was placed over the thigh and SFA. A

multi-slice turbo-spin-echo pulse sequence with fat presatura-

tion was used. Flowing blood was suppressed using spatial pre-

saturation, with a combination of periodic excitation of upstream

slices and spatial presaturation. Additional flow suppression

for downstream slices was provided by the imaging excitations

themselves, so that blood was suppressed throughout the mul-

tislice data set. Other imaging parameters included: repetition

time 11 ms, echo time 7.6 ms, echo spacing 7.5 ms, turbo factor

(9), voxel size 0.5 × 0.5 × 3 mm, 4 signal averages, with inter-

leaved image sets used to cover the length of the SFA. Imaging

began above the femoral bifurcation and continued through the

adductor canal. Representative contiguous images of the femoral

artery from a patient with PAD are shown (Fig. 1).

Image analysis

Before quantification of plaque volume, image quality was

assessed and deemed adequate or inadequate for analysis. A total

of 23 patients were imaged, and 17 had image quality suitable for

analysis. In (4) of the (6) excluded data sets, complete occlusion

of the SFA precluded analysis. Occlusion of flow was verified

with velocity encoded imaging. In 1 subject, obesity (BMI = 33)

and a metal artifact precluded analysis, and another subject’s

obesity (BMI > 42) led to poor image quality.

In those subjects with a patent SFA and adequate image qual-

ity, atherosclerotic plaque volume (APV) of the SFA was con-

toured by two independent operators using VesseIMASS soft-

ware (University of Leiden, Leiden, The Netherlands). For each

individual slice, both the luminal and adventitial borders were

manually delineated and cross-sectional area (CSA) of the ves-

sel wall measured. Total vessel wall volume was calculated as:

Volume =
n∑

i=1

CSAi × H,

where H is the slice thickness and n the number of slices in the

3-D data set. Volume measurements were initiated at the bifur-

Figure 1. Representative sequential images (upper left to lower

right) from the femoral artery of a subject with mild to moderate

peripheral arterial disease with both the luminal and adventitial

border clearly delineated. Note the slice to slice variation in plaque

morphology.

cation of the common femoral artery, and total vessel distance

covered for each analysis was predefined. Nine patients returned

(at a mean of 24 days) for evaluation of test-retest reliability us-

ing anatomic landmarks and matched number of acquired slices.

Imaging time was measured from acquisition of the first scouts to

completion of the imaging protocol but does not include time for

patient positioning, coil placement, and insertion and removal

from the scanner.

Statistical analysis

Subject characteristics are summarized as mean and standard

deviation. The intraclass correlation coefficients of reliability

were calculated for the interobserver, intraobserver, and repro-

ducibility data using the output of analysis of variance from SAS

statistical software (version 9.0, Cary, NC). Reproducibility and

both inter and intraobserver variability were also analyzed using

the method of Bland and Altman (19). MedCalc software ver-

sion 8.1.0.0, Mariakerke, Belgium) was used to generate Bland-

Altman plots.

Using the test-retest reliability data, we estimated the sample

sizes needed to detect the true difference between the means of

APV with both 80% and 90% power. Assuming a two-tailed

test, a significance level of 0.05, and using the estimated stan-

dard deviation, the sample sizes needed to detect the true mean

differences ranging from 1% to 5% of the mean APV were es-

tablished.
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Table 1. Patient characteristics

SBP

ID ABI CAD Stroke DM Tobacco (mmHg) BMI

1 0.66 Yes No Yes Yes 125 22.7

2 0.8 Yes No No Yes 153 23.5

3 0.77 Yes No Yes Yes 130 24.2

4 0.48 No No No Yes 195 N/A

5 0.81 Yes No Yes Yes 103 27.1

6 0.85 No No No Yes 180 21.1

7 0.6 Yes No No Yes 165 21

8 0.73 Yes Yes Yes Yes 150 39.8

9 0.6 Yes No Yes Yes 140 53.2

10 0.8 Yes No Yes Yes 140 28.3

11 0.69 Yes Yes No Yes 130 25.5

12 0.58 Yes No Yes Yes 136 50.2

13 0.83 No No No Yes 132 24

14 0.65 No No Yes Yes 136 21.7

15 0.85 No No No Yes 132 24.9

16 0.55 No No No Yes 155 26.4

17 0.80 No No No Yes 133 26.3

Mean 0.72 143 28.7

SD 0.11 22 10.0

N/A indicates data not available

RESULTS

Seventeen patients (age 63 ± 10 yrs) with mild to moderate

PAD (ankle brachial index 0.72 ± 0.11) were studied. Charac-

teristics of patients are shown in Table 1. Nineteen SFA vessels

in the 17 patients were evaluated (mean length 17.1 ± 5.2 cm)

with total image acquisition time of 13.1 ± 2.7 minutes per ves-

sel. Mean APV measured was 7.27 ± 3.73 cm3.

For the inter-observer data, intraclass correlation coefficient

was R = 0.987 (95% CI 0.967–0.995). Bland-Altman plot for

inter-observer variability is shown in Fig. 2. The percent dif-

ference between operator measurements was 5.2 ± 3.3% of the

total plaque volume measured per patient. A single operator per-

formed repeat analysis of the 19 vessel segments at a mean of

24 days later. For intra-observer data, intraclass correlation co-

efficient was R = 0.997 (95% CI 0.993 to 0.998). Bland-Altman

Figure 2. Bland-Altman plot of inter-observer variability. Mean dif-

ference between different operator measurements is 0.19 cm3.

Figure 3. Bland-Altman plot of intra-observer variability. Mean dif-

ference between same operator measurements on single data-set

is 0.01 cm3.

plot for intra-observer data is shown in Fig. 3. For reproducibility

data, intraclass correlation coefficient was R = 0.996 (95% CI

0.991 to 0.999). Bland-Altman analysis of test-retest reliability

(n = 9) is shown in Fig. 4.

Sample size estimates for a study evaluating APV progres-

sion/regression were made using a paired t-test and standard

deviation = 0.267 obtained from the test-retest reliability data

(Table 2). These estimates assume all patients enrolled will have

adequate image quality for analysis.

DISCUSSION

The present study demonstrates that high resolution, high

volume MR measurement of atherosclerotic plaque in the su-

perficial femoral artery in peripheral arterial disease is feasi-

ble and highly reproducible and reliable. Potential applications

include diagnosing preclinical vascular disease, assessing dis-

ease severity in those with established PAD, and monitoring

atherosclerotic plaque progression in response to both estab-

lished and novel therapies. Furthermore, this noninvasive ap-

proach could reduce required sample sizes for clinical studies

Figure 4. Bland-Altman plot of test-retest reproducibility. Mean dif-

ference between test-retest is 0.11 cm3.
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Table 2. Sample size estimates

Mean � APV N (power = 0.80) N (power = 0.90)

1% 107 142

2% 27 36

3% 12 16

5% 5 6

using atherosclerotic plaque progression rate as a surrogate ef-

ficacy endpoint.

Contrast x-ray angiography remains the most commonly

used clinical tool for diagnosing atherosclerosis and assessing

its severity. The technique has also been used extensively in

studies evaluating plaque progression rate (20–22) a dynamic

parameter now established as an important surrogate marker of

clinical risk (23). However, angiography is associated with the

risk of procedural complications and is hampered by its inability

to visualize the vessel wall, a pitfall that can lead to systematic

underestimation of plaque burden (11). It is now recognized that

atherosclerotic plaque in coronary arteries may not encroach the

lumen until the lesion occupies up to 40% of the combined arte-

rial wall and lumen volume, a phenomenon commonly referred

to as positive remodeling (10). Positive remodeling also appears

to play an important role in disease progression in the peripheral

vasculature (24), suggesting that a technique capable of visual-

izing the vessel wall will be most accurate for the assessment of

atherosclerotic disease burden in the periphery.

In recent years, IVUS has emerged as the diagnostic gold

standard for imaging vessel wall pathology. IVUS is a catheter

based imaging technique that provides cross-sectional images of

both the vessel lumen and wall with excellent spatial resolution,

but it is invasive and can be associated with vessel spasm, dissec-

tion, and guide wire entrapment (25, 26). Although increasingly

employed to evaluate plaque burden and vascular remodeling as

a surrogate efficacy endpoint in randomized clinical studies (23,

27, 28), IVUS is not an ideal strategy for making serial mea-

surements in humans, prompting investigators to seek out novel

noninvasive approaches for quantifying atheromatous plaque.

There are a number of advantages to using CMR in the study

of human peripheral atherosclerosis. In addition to its excellent

safety profile, recent technological advances in sequence design,

imaging speed, and detection coils have made possible rapid,

high-resolution imaging of atherosclerosis in-vivo (29). Further-

more, its sensitivity to different chemical components of tissue

can be exploited to noninvasively characterize plaque composi-

tion (30–32). Enthusiasm for the MR approach has already led

to several studies evaluating atherosclerotic plaque progression

in humans (15–17), but few studies have evaluated the utility of

CMR in measuring plaque in the peripheral circulation among

PAD. In the most rigorously performed study to date, 7 patients

with peripheral arterial occlusive disease were examined by both

high-resolution MR imaging and IVUS (12). The MR approach

consisted of a three-dimensional time-of-flight sequence used to

measure vessel wall parameters with an in-plane resolution of

0.78 × 0.49 mm2 and slice thickness of 2 mm. High-resolution

MR using this bright blood technique consistently overestimated

plaque area in the peripheral vessels compared to IVUS mea-

surements. Moreover, posterior echo shadowing precluded reli-

able IVUS analysis in nearly half of the segments assessed, also

highlighting the limitations of IVUS in PAD.

We sought to develop an approach to high resolution assess-

ment of plaque volume in the peripheral circulation of patients

with mild to moderate PAD. To facilitate this, a flexible, linear

four-element surface array coil was designed and built specif-

ically for this protocol. In order to clearly delineate both the

luminal and adventitial border of the vessel wall, a black blood

technique with fat saturation was chosen. Rather than using dou-

ble inversion recovery sequences to generate black blood, flow

saturation bands were applied in order to reduce acquisition

times. With this protocol, nearly 17 cm of the SFA was imaged

in just over 13 minutes with excellent in-plane spatial resolution.

There are several potential advantages of imaging plaque vol-

ume in the SFA. The lack of SFA movement can significantly

limit artifacts compared to imaging in other vascular territories

such as the carotids, coronaries, and aorta which can be limited

by swallowing or respiratory motion. Also, the relative prox-

imity of the arteries in the leg to the body surface allows the

utilization of high-resolution surface coils like the one custom-

built for this protocol. Perhaps the biggest advantage of imaging

plaque in the SFA is the sheer volume of atheroma that can

be measured, 7.27 ± 3.73 cm3 in this study, several orders of

magnitude greater than volumes reported in either the carotid

or coronary circulations. The large volume of plaque that can

be quantified and excellent reproducibility of the measurements

would reduce sample sizes needed to adequately power clinical

studies using atherosclerotic plaque progression as a surrogate

endpoint (Table 2).

When estimating the potential impact of this technique on

sample size estimates for clinical studies, one must consider the

other noninvasive strategies currently being employed. Using

carotid intimal medial thickness measurements as a surrogate

efficacy end-point, Bots et al. reported that 468 patients would

be required to detect a treatment effect of 30% (power 0.80) (33).

Three-dimensional ultrasound of plaque in the carotids would

require fewer patients to demonstrate efficacy, yet a recent study

reported that 203 patients would still be needed to detect a 10%

change in plaque volume (power = 0.90) measured over a three

month period (34). Measuring the progression of coronary cal-

cium with cardiac computed tomography has been proposed

as yet another noninvasive alternative to evaluating disease pro-

gression, yet sample sizes required for these studies remain large,

and there is the strong suggestion that calcification represents

a fundamentally distinct biological process which may corre-

late less with clinical events than plaque volume progression

(35–37). Sample size estimates for our noninvasive approach

are similar to that reported using coronary IVUS (27).

Limitations

Using the techniques described, the ability to accurately de-

fine the luminal border of the vessel was predicated on the
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generation of black blood. Whether using inversion recovery or

flow saturation bands, as done in this study, black blood contrast

requires adequate inflow from outside of the selected slice. Even

in this population of patients with mild to moderate disease, 17%

had near-complete or complete occlusion of the SFA making

images impossible to analyze. The reliability and reproducibil-

ity of this imaging strategy may suffer further when performed in

patients with more advanced vascular disease and significantly

reduced flow with potentially higher rates of SFA occlusion.

While techniques that do not rely on the generation of black

blood (steady-state free precession) to define the lumen may be

adequate in patients with advanced disease and very slow blood

flow, these techniques will still be insufficient in the setting of

complete occlusions.

Because we utilized a small-element surface coil, vessel im-

age quality suffered in more obese patients. However, only one

patient in this study could not be analyzed as a consequence of

obesity, and two individuals with BMI > 50 were included in the

analysis. A larger coil array and longer scan times with more sig-

nal averages would improve image quality in larger patients. We

also found that image quality diminished in the distal 1/4 of the

SFA in some patients, typically as the vessel coursed deeper into

the tissue and posteriorly into the popliteal fossa. This could be

problematic as the adductor canal region of the SFA has a known

predilection for atherosclerosis and is a common site of disease

progression (38, 39). In the coronary vasculature, even mod-

est changes in plaque progression may be associated with large

differences in vascular outcomes (20, 21, 23). Whether this rela-

tionship between plaque progression and vascular events holds

true in the periphery remains undetermined.

Sample size estimates are based on plaque volumes measured

in patients with established PAD. In clinical studies evaluating

therapeutic efficacy among patients with subclinical atheroscle-

rosis, larger total sample sizes may be required using our ap-

proach because of smaller total plaque burden in this population.

While required sample sizes may be reduced with measurement

of plaque volume progression in the SFA, total imaging costs

may be similar to that of other techniques because of the in-

creased expense of CMR. However, these imaging costs would

be small compared to the potential savings realized by having

a substantially smaller patient cohort to enroll, image, analyze,

and follow.

Future directions

We have demonstrated that accurate noninvasive quantifica-

tion of peripheral plaque burden is feasible in PAD. This ap-

proach could be used to better understand the natural history

of PAD and characterize plaque volume and distribution in dif-

ferent PAD patient subsets, including those who are asymp-

tomatic, have atypical symptoms, or are diabetic. We also hope

to identify plaque characteristics that can be used to recognize

PAD at highest risk for adverse clinical outcomes in the lower

extremities. Furthermore, serial noninvasive measurement of

plaque volume with CMR could allow for the study and valida-

tion of both established and novel therapies for PAD, including

behavioral, pharmacologic, genetic, stem cell, and percutaneous

interventions. Correlation of plaque progression in the periph-

eral circulation with vascular events in the coronary, cerebral,

and peripheral circulation is also warranted.
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