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ABSTRACT

Purpose: To investigate regional diastolic and systolic function using tissue cardiovascular
magnetic resonance (CMR), early after transmural myocardial infarction of the inferior wall due
to single proximal right coronary artery disease. Materials and Methods: Velocity encoded CMR
was used to measure early diastolic transmitral flow velocity (E), and regional, longitudinal,
myocardial systolic (Sa) and early diastolic (Ea) velocities (tissue CMR) in 15 patients with
a recent transmural inferior myocardial infarction and in 15 age and LV-mass index matched
control subjects. An unpaired two-tailed t test was used to assess significance of continuous
variables. Results: Global systolic (ejection fraction 46 ± 7% versus 57 ± 4%, p = 0.000052)
and global diastolic LV function (average Ea of infarcted or inferior, remote or anterior, adjacent
or septal and lateral myocardium 6.8 ± 1.7 cm/s versus 10.4 ± 1.5 cm/s, p = 0.0000012) were
impaired in patients as compared to controls. Regional systolic and diastolic LV velocities were
impaired in infarcted and adjacent tissue in patients. However, in remote or anterior tissue,
systolic velocities were preserved (Sa 6.6 ± 2.0 cm/s versus 6.8 ± 1.4 cm/s, p = 0.70), but
diastolic velocities were impaired in patients as compared to controls (Ea 7.2 ± 2.3 cm/s versus
10.2 ± 2.5 cm/s, p = 0.0026). Conclusions: Regional diastolic velocities early after inferior
myocardial infarction are impaired in the infarcted, adjacent and remote tissue, but regional
systolic velocities are preserved in remote tissue.

INTRODUCTION

Impairment of global diastolic left ventricular (LV) function
following myocardial infarction is related to LV remodeling (1)
and is a predictor of cardiac death (2). Diastolic dysfunction
is an early marker of disease. In myocardial infarction of the
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inferior wall, regional LV diastolic function, the relation between
regional and global diastolic function, and the relation between
regional diastolic and systolic function is largely unknown.

Myocardial infarction of the anterior wall causes impaired
regional function in both infarcted, adjacent and remote my-
ocardium (3, 4). Myocardial infarction of the inferior wall ex-
hibits a smaller functional loss when compared to similar sized
myocardial infarction of the anterior wall (5, 6). Therefore,
we hypothesized that in myocardial infarction of the inferior
wall, regional diastolic velocities of the remote tissue are im-
paired, while regional systolic velocities are preserved. Velocity
encoded cardiovascular magnetic resonance (CMR) with low
(30 cm/s) velocity encoding (tissue CMR) allows measurement
of regional myocardial velocities (7–9).

Therefore, the purpose of the present study was to in-
vestigate regional diastolic and systolic function using tissue
CMR, early after transmural myocardial infarction of the in-
ferior wall due to single vessel proximal right coronary artery
disease.
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METHODS

Subjects and study design

The study protocol was approved by the medical ethical
committee, and all patients gave written informed consent be-
fore participation. Patients with a first acute q-wave myocardial
infarction of the inferior wall and single proximal, dominant
right coronary artery disease were included in the present study.
All patients underwent percutaneous coronary intervention of
the culprit lesion within 6 hours of the acute event and received
treatment with beta-blockers and angiotensin-converting
enzyme inhibitors. Patients with a contraindication for CMR,
irregular heart rate, hypertension or diabetes mellitus were
excluded. The data were compared with age and LV-mass index
matched control subjects.

CMR measurements

CMR studies were performed using a Sonata MR scanner
and a 12 channel Body Array surface coil (Siemens, Erlangen,
Germany). The entire heart was imaged in the short-axis orien-
tation with a breath-hold cine steady-state free precession tech-
nique (TrueFISP imaging) (9).

Late gadolinium enhancement (LGE) was studied 15 minutes
after intravenous bolus injection of 0.2 mmol/kg gadolinium-
DTPA (Magnevist, Schering, Berlin, Germany). The entire heart
was imaged in short-axis orientation using a TrueFISP sequence
(10).

Transmitral flow was acquired using a retrospective elec-
trocardiographically triggered Flash phase-contrast CMR tech-
nique with a velocity sensitivity of 130 cm/s, as described before
(9). In order to cover late diastolic filling, acquisition was per-
formed throughout the cardiac cycle with a retrospective period
of 1.2. Imaging parameters included the following: 30/3.2 (rep-
etition time ms/echo-time ms), 5-mm section thickness, 240 ×
256 matrix, 380 × 380 mm field of view, 1.6 × 1.5 mm in-plane
spatial resolution and 30◦ flip angle. Two signals were averaged
and temporal resolution was 16 to 18 ms.

Regional LV velocities were assessed by repeating this phase-
contrast CMR sequence with a velocity encoding of 30 cm/s
(tissue CMR) and the slice positioned during early diastole at 2/3
of the long-axis of the interventricular septum perpendicular to
tissue movement as described previously (9) and encompassing
the infarct area.

CMR image analysis

Offline analysis of short-axis images was performed using
MASS analytical software (Medis, Leiden, The Netherlands).
From the volume-versus-time curves, LV peak filling rate and
time to peak filling rate were calculated (11). LV wall motion was
assessed visually by two observers (B.P and H.J.L., 8 years and
more than 15 years of experience in cardiac CMR, respectively)
working together in consensus. Each segment was scored in a
17-segment model (12) using a 4-point scale (1 = normal wall
motion, 2 = hypokinesia, 3 = akinesia, 4 = dyskinesia) (13).

For each patient a wall motion score index was calculated as the
sum of scores divided by the number of total segments.

The transmural extent of LGE was scored using the 17-
segment model (13). Transmurality in each segment was visu-
ally assessed (B.P. and H.J.L. in consensus) on a 5-point scale:
0 = no hyperenhancement; 1 = 1–25% hyperenhanced; 2 =
26–50% hyperenhanced; 3 = 51–75% hyperenhanced, and 4
= 76–100% hyperenhanced (14). For each patient, a myocar-
dial transmurality index was calculated as the sum of segmental
scores divided by the number of segments. A transmurality in-
dex in the right coronary artery territory or inferior transmurality
index was assessed separately as the sum of LGE score divided
by 5 segments assigned to the right coronary artery (basal and
mid inferior segments, basal posteroseptal, basal posterior and
apical inferior segments). The extent of myocardial damage was
traced and calculated using MASS analytical software package
and expressed as percentage of total LV mass (Medis, Leiden,
The Netherlands) (15).

From the transmitral flow curves, early (E) and late (A) LV
filling velocity and E/A ratio was determined (9). Analysis of
longitudinal myocardial tissue velocities was done offline by one
author (B.P.). A standardized circular region of interest (ROI)
of 20 pixels was placed at different locations in the LV my-
ocardium (Fig. 1). The measured myocardial regions were: in-
ferior (= infarcted); lateral and septal (= adjacent); and anterior
(= remote). The ROI was traced on the modulus image, ad-
justed in each phase for cardiac motion and was transferred to
the paired phase image, using the FLOW analytical software
package (Medis, Leiden, The Netherlands). For each ROI, peak
systolic velocity (Sa) and peak early diastolic velocity (Ea) was
measured (Fig. 1). Regional velocities were measured in the
same standardized ROI position in control subjects. In addition,
average early diastolic longitudinal tissue velocity of infarcted,
adjacent and remote myocardium or average Ea was calculated
as a measure of global diastolic LV function.

Statistical analysis

Data are presented as mean ± SD. An unpaired two-tailed
t test was used to compare parameters between patients and
control subjects. Significance was set at p < 0.05. All statistical
analyses were performed by using computer software (SPSS for
Windows, version 12.0; SPSS, Chicago, Illinois, USA).

RESULTS

Fifteen consecutive patients (male/female: 12/3) were in-
cluded. Maximal creatine kinase MB was 224 ± 147 ng/mL.
CMR was performed at 6 ± 3 days (range 2–12 days) after
acute myocardial infarction.

Fifteen control subjects (male/female: 10/5) were normal at
clinical examination, without a history of cardiovascular dis-
ease and without any complaints. The age of patients (52 ± 5
years) and healthy subjects (48 ± 6 years) was matched (p =
0.10). Subjects were normotensive, patients with a mean blood
pressure of 89 ± 8 mm Hg, and healthy subjects with a mean
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Figure 1. Assessment of myocardial velocities. (a) Velocity encoded MR imaging was performed with a velocity encoding of 30 cm/s, and the
image slice positioned at 2/3 of the long axis, planned on early diastolic four- and two-chamber images, perpendicular to the interventricular
septum. (b) Corresponding velocity encoded image. A standardized circular region of interest of 20 pixels (open circles) was placed at different
locations around the circumference of the heart. A reference line (I) was traced through the center of the left ventricular (LV) cavity and the
intersection of the posterior LV with the right ventricle (RV). Perpendicular on reference line (I) a second reference line (II) was positioned through
the center of the LV cavity, dividing the LV myocardium into four regions. Regions of interest were placed in the center of the myocardium at the
following locations: inferior (= infarcted); lateral (= adjacent); septal (= adjacent); and anterior (= remote) myocardium. (c) Velocity versus time
curve in remote, adjacent lateral, adjacent septal and infarcted myocardium. Ea = peak early diastolic tissue velocity; LV = left ventricle; RV =
right ventricle; Sa = peak systolic tissue velocity; Venc = velocity encoding.

blood pressure of 89 ± 13 mm Hg (p > 0.99). Heart rate was
67 ± 9 beats/min and 74 ± 15 beats/min (p > 0.18) for patients
and control subjects, respectively.

Global left ventricular morphology
and function

The culprit lesion was located in the proximal segment of the
right coronary artery and after percutaneous intervention TIMI
3 flow was obtained. All patients had a transmural myocardial
scar located in the LV inferior wall (including basal and mid
segments of the inferior wall) (Table 1). Parameters of global
LV systolic and diastolic function are shown in Table 1.

Global systolic LV function was depressed in the patients as
compared to control subjects (ejection fraction: 46 ± 7% versus
57 ± 4%, p = 0.000052). Global diastolic LV function was
impaired in patients as compared to controls, as indicated by

impaired LV filling (peak filling rate: 301 ± 98 mL/s versus 430
± 63 mL/s, p = 0.00026; time to peak filling rate: 238 ± 138
ms versus 152 ± 25 ms, p = 0.032), impaired average Ea (6.8 ±
1.7 cm/s versus 10.4 ± 1.5 cm/s, p = 0.0000012), and increased
E/posteroseptal Ea (12.5 ± 4.0 versus 8.8 ± 5.3, p = 0.00030).
E/A was not different between patients and controls.

Regional left ventricular function

Regional systolic velocities were reduced in patients as com-
pared to controls, in the infarcted myocardium (inferior Sa: 5.5 ±
1.4 cm/s versus 7.5 ± 1.9 cm/s, p = 0.002), and adjacent my-
ocardium (Table 2). Regional systolic velocities were preserved
in the remote myocardium (remote Sa patients: 6.6 ± 2.0 cm/s
versus remote Sa controls: 6.8 ± 1.4 cm/s, p = 0.70).

Regional diastolic LV velocities were impaired in patients in
infarcted myocardium (Ea: 5.7 ± 2.0 cm/s versus 9.2 ± 2.8 cm/s,
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Table 1. Scar Tissue, Global Systolic and Diastolic Left Ventricular Function

Parameter

Patients with
Myocardial
Infarction
(n = 15)

Control
Subjects
(n = 15) p value

Transmurality index 0.88 ± 0.3 0 0.0000006
Inferior transmurality index 3.0 ± 1 0 0.00000054
Scar tissue (%) 27 ± 8 0 0.00000005
Mass index (g/m2) 81 ± 17 71 ± 11 0.080
End-diastolic volume/BSA (mL/m2) 86 ± 20 72 ± 8 0.019
End-systolic volume/BSA (mL/m2) 48 ± 6 31 ± 5 0.0019
Ejection fraction (%) 46 ± 7 57 ± 4 0.000052
Stroke index (mL/m2) 39 ± 7 40 ± 4 0.48
Cardiac index (L/min/m2) 2.8 ± 0.4 3.6 ± 0.8 0.0028
Wall motion score index 1.5 ± 0.3 1 0.0000089
Peak filling rate (mL/s) 301 ± 98 430 ± 63 0.00026
Time to peak filling rate (ms) 238 ± 138 152 ± 25 0.032
E (cm/s) 74 ± 21 76 ± 19 0.83
A (cm/s) 56 ± 14 51 ± 8 0.23
E/A 1.4 ± 0.4 1.5 ± 0.5 0.34
average Ea (cm/s) 6.8 ± 1.7 10.4 ± 1.5 0.0000012
E/posteroseptal Ea 12.5 ± 4.0 8.8 ± 5.3 0.00030

All values are mean ± SD. Parameters of scar tissue, global systolic and diastolic function were determined by magnetic resonance. A = peak
mitral velocity at atrial contraction; BSA = body surface area; E = peak transmitral velocity in early diastole, Ea = early diastolic tissue velocity;
average Ea represents average Ea of all regions (infarcted, adjacent and remote).

p = 0.00058), in adjacent myocardium (Table 2, lateral and sep-
tal), as well as in remote myocardium (Ea 7.2 ± 2.3 cm/s versus
10.2 ± 2.5 cm/s, p = 0.0026) as compared to control subjects
(Table 2). Relative regional contribution to global diastolic LV
function was expressed as percent difference of regional and
average Ea. There was no difference in relative regional con-
tribution to global diastolic LV function between patients and
control subjects (Table 2).

DISCUSSION

In the present study, clinical application of tissue CMR
demonstrated that early after reperfused transmural myocardial
infarction of the inferior wall, regional longitudinal diastolic
velocities were impaired in the infarcted, adjacent and remote
tissue, whereas regional longitudinal systolic velocities were
preserved in remote tissue.

Table 2. Regional Systolic and Diastolic Left Ventricular Function

Sa
(cm/s)

Ea
(cm/s)

|Difference| between
regional Ea and
average Ea (%)

Region Patients Controls Patients Controls Patients Controls

Inferior 5.5 ± 1.4 7.5 ± 1.9 5.7 ± 2.0 9.2 ± 2.8 −16 ± 18 −12 ± 22
p = 0.002 p = 0.0006 p = 0.55

Lateral 7.3 ± 1.7 8.8 ± 2.0 8.0 ± 3.2 12.6 ± 3.0 16 ± 31 20 ± 23
p = 0.035 p = 0.00037 p = 0.65

Septal 5.6 ± 1.2 8.5 ± 2.3 6.3 ± 1.8 9.8 ± 2.6 −5 ± 24 −5 ± 26
p = 0.00033 p = 0.00027 p = 0.95

Anterior 6.6 ± 2.0 6.8 ± 1.4 7.2 ± 2.3 10.2 ± 2.5 6 ± 17 −3 ± 16
p = 0.70 p = 0.0026 p = 0.16

Average 6.3 ± 1.0 8.6 ± 1.3 6.8 ± 1.7 10.4 ± 1.5 NA NA
p = 0.000014 p = 0.0000012

All values are mean ± SD. E = peak transmitral velocity in early diastole; Ea = peak early diastolic tissue velocity; average Ea represents average
Ea of all regions (infarcted, adjacent and remote); Sa = peak systolic tissue velocity. NA = non applicable.
Unpaired two-tailed Student t test control subjects versus patients.
Percent difference with average Ea was not significant between control subjects and patients.
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Recently, quantification of regional myocardial function by
measurement of myocardial velocities and by measurement
of myocardial deformation or strain has been made possible.
Myocardial velocities can be measured by tissue Doppler
imaging and tissue CMR (7–9). Myocardial strain can be
measured by a tissue Doppler imaging-based modality: strain
Doppler echocardiography or strain rate imaging (16, 17) and by
CMR tagging (18). The analysis of remote myocardial function
has mainly been focused on anterior myocardial infarction (5,
19), demonstrating reduced longitudinal velocities using tissue
Doppler imaging (20), impaired strains (3, 21) and strain rates
(22, 23) in the remote myocardium using strain rate imaging
and CMR tagging.

In this study, regional longitudinal function was assessed in
the early phase after myocardial infarction of the inferior wall.
For this purpose, longitudinal myocardial velocities were mea-
sured using tissue CMR.

In the presently studied patients with myocardial infarction
of the inferior wall, regional longitudinal systolic LV velocities
(Sa) were preserved in the remote myocardium. In myocardial
infarction of the anterior wall however, tissue Doppler imag-
ing data have shown reduced myocardial velocities (20), and
CMR tagging data have shown impaired longitudinal LV short-
ening in the noninfarcted myocardium (3, 4). In the presently
studied patients with myocardial infarction of the inferior wall,
only longitudinal diastolic LV velocities (Ea) of both the adja-
cent and the remote myocardium were found impaired. Longi-
tudinal ventricular motion is mainly determined by the oblique
clockwise oriented myocardial fibers in the subendocardium (24,
25). The circumferentially wrapped cardiac fibers in the middle
layer and the oblique anticlockwise oriented cardiac fibers in
the subepicardial layer mainly contribute to circumferential and
radial function (26) .During LV filling the ventricle expands rad-
ically and longitudinally. Diastolic dysfunction is known to be
a sensitive and early marker of myocardial disease (22, 27). In
contrast to the subepicardial myocardium, the function of the
subendocardial myocardium is especially sensitive and prone to
ischemia (28, 29). Therefore, impairment of longitudinal dias-
tolic velocities in the adjacent and remote myocardium may be
an early sign of myocardial dysfunction. Although myocardial
infarction of the inferior wall exhibits a smaller functional loss
as compared to similar sized myocardial infarction of the an-
terior wall, impact on the remote region may be apparent from
regional diastolic dysfunction.

Regional myocardial velocities are, however, not only deter-
mined by the function of the segment under investigation but
also by traction and tethering from other myocardial segments
and by translational motion of the entire heart (16). Motion of
the heart base is basically the resultant sum of longitudinal mo-
tion between apex and base of the heart. Therefore, reduction
of velocities in these basal segments does not always mean re-
duction in function of these segments. In the presently studied
patients, reduction of myocardial velocities in the remote region
during diastole might represent myocardial tethering. Myocar-
dial deformation (strain) and rate of deformation (strain rate) are
less influenced by cardiac translation and motion due to tether-

ing from other segments. Assessment of strain rate in future
research by using CMR tagging may overcome the limitations
of velocity measurement (17).

Within hours of cardiomyocyte injury, infarct expansion re-
sults in wall thinning and ventricular dilatation causing elevation
of systolic and diastolic wall stress (30). Increased wall stress
stimulates adaptive hypertrophy and alterations in both the in-
farcted and surrounding non-infarcted ventricular myocardium
architecture in order to distribute wall stresses more evenly. Late
remodeling (beyond 72 hours) is characterized by distortion of
the LV shape and hypertrophy in the remote myocardium. In-
creased remodeling and strain alterations in the non-infarcted
myocardium have been related to the extent of microvascular
obstruction within infarcted regions (31). Therefore, both the
tethering effect of the infarcted myocardium and regional alter-
ations in wall stress (5, 31, 32), together with reduced coronary
vasodilation (31) might explain reduction of function in the ad-
jacent and remote myocardium. Due to smaller impact on global
LV function in patients with myocardial infarction of the inferior
wall, only moderate LV remodeling (5, 6) and therefore mod-
erately increased LV end diastolic volumes were found in the
present study.

Global diastolic dysfunction and impaired relaxation was ap-
parent in patients from the functional LV volumes showing a re-
duced LV peak filling rate and a prolonged LV time to peak filling
rate. Posteroseptal Ea and average Ea which represent the net ve-
locity changes of the heart during early diastole in LV long-axis
dimension relate to the rate of myocardial relaxation (33). The
transmitral flow pattern, including E/A ratio (1.5 ± 0.5 versus
1.4 ± 0.4 in patients, p > 0.05), however, was similar between
control subjects (34, 35) and patients. Since posteroseptal Ea and
average Ea were found to be reduced, the “normal” transmitral
flow pattern in patients was most likely pseudonormal (9, 33).

In addition, dysfunction of the early diastolic longitudinal LV
motion of both infarcted and non-infarcted myocardium might
have contributed to global LV diastolic dysfunction. There was
a mild increase in the relative contribution of the remote region
to global early diastolic long-axis velocity (= average Ea). The
remote region is relatively small, and this contribution was not
statistically significantly different. Therefore, relative segmental
contribution to global diastolic LV function in patients was sim-
ilar to the segmental distribution in control subjects. Since early
diastolic long axis LV motion precedes transmitral flow and in-
fluences LV filling (36), depressed longitudinal LV motion of in-
farcted, adjacent and remote myocardium affects LV filling due
to decreased elastic recoil and impaired diastolic suction (37).

CONCLUSIONS

Assessment of regional velocities after myocardial infarction
is feasible using tissue CMR. Regional diastolic velocities early
after inferior myocardial infarction are impaired in the infarcted,
adjacent and remote tissue. However, regional systolic velocities
are preserved in remote tissue. Therefore, impairment of regional
diastolic velocities can be an early marker of dysfunction in
remote tissue after inferior myocardial infarction.
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