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The accurate representation of two-dimensional images in three dimensions has become important for many medical imaging applications
and for cardiac magnetic resonance imaging (MRI) in particular. Reconstruction methods applied after data acquisition can produce three-
dimensional information from two-dimensional data and make applications such as surgical planning more effective. Current reconstruction
techniques usually demand contrast agents, and can suffer due to poor segmentation and sampling constraints that cause surface
irregularities and distort dimensions. The novel technique presented here for anatomical modeling uses adaptive control grid interpolation
(ACGI) to approximate data not captured by scanning, and a progressive shape-element segmentation technique to complete reconstruction.
Quantitative validations conducted on models of pediatric cardiac malformations have confirmed the theoretical advantages of this
technique, and that higher quality is achieved than with competing methods based on geometric parameters. Vascular diameters from
reconstructions showed errors of less than 1% for a known geometry as compared to over 9% for competing methods. Qualitatively, models
produced with the new methodology displayed substantial improvement over alternatives. Approximately 50 rare cardiac structures,
including surgically altered Fontan and atypical aortic anatomies, have been reconstructed. All data used to create these reconstructions were
acquired using standard pulse sequences and without contrast agents. Benefits of the new technique are particularly evident when complex
vascular configurations complicate reconstruction. The proposed methodology enables a powerful tool allowing physicians to analyze and
manipulate highly accurate and clearly presented vascular structures in an interactive medium.
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1. Introduction

The advent of magnetic resonance imaging (MRI) has
equipped clinicians with valuable technology for the non-
invasive analysis of anatomy and physiology. In one of its
most common forms, two-dimensional (2D) imaging, MRI
acquires parallel planar samples from a three-dimensional
(3D) data source. These samples can later be reconstructed
to model specific 3D structures from the original imaging
target. Cardiovascular medicine is one area that has been
advanced by MRI, and now relies heavily on both the
modality itself and reconstruction to enable applications such
as surgical planning.

Like all imaging modalities, MRI has its shortcomings,
one of which is the tradeoff between spatial resolution and

signal-to-noise ratio (SNR). Averaging greater numbers of
signals and performing oversampling can offer benefits, but
do nothing to change this fundamental compromise. For many
MR applications based on 2D imaging, in-plane resolution is
deemed more important and out-of-plane resolution is
sacrificed in order to maintain SNR. Under other circum-
stances, an image stack composed of isotropic voxels is more
desirable, and is acquired at the expense of in-plane
resolution. Both of these cases present problems that relate
to the interpolation and segmentation components of
reconstruction scenarios. In the first case, data sets are
commonly gathered with in-plane pixel dimensions of less
than 1 mm but with slice thicknesses of 3 to 5 mm, which
becomes problematic for 3D reconstruction. To counteract
this, interpolation is used to approximate information lost to
undersampling. Examples of raw and interpolated data sets
are offered in Fig. 1. Like all interpolation problems, the
quality of approximated data in the MR case is a function of
the methods used and can vary significantly among
techniques. The data in Fig. 1(b) were interpolated with the
novel approach to be presented here.
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When isotropic voxels are acquired, the manifestations of
undersampling and averaging may be more apparent in the in-
plane data. Partial volume effects cause the boundaries of
structures like blood vessels to be poorly defined, rendering
many basic segmentation strategies ineffective. Under these
circumstances, more creative approaches are required to
segment accurately. In practice, all 2D MR data sets exhibit,
to some extent, manifestations of the spatial resolution/SNR
tradeoff. The problem of reconstructing these data has been
addressed in the past, but there remains a great deal of room
for improvement (1–17). Difficult scenarios like those that
involve complex cardiac vasculatures pose even further
challenges and require robust solutions (12, 13).

The new methodology presented here approaches the
reconstruction problem from a different perspective and was
designed for application to tortuous small-scale vascular
structures. Current practice often calls for the use of
specialized pulse sequences and contrast agents to facilitate
reconstruction, but all data presented here were acquired with
standard pulse sequences and without any contrast agents.
This technique allows more to be done with routine data at
a lesser cost. The novel interpolation and segmentation

strategies that define the technique create a tool that performs
with higher quality than other state-of-the art approaches, and
is capable of addressing reconstruction problems that those
methods cannot.

2. Methods

The interpolation portion of the reconstruction methodology
presented here was inspired by techniques originally designed
for motion estimation in nonmedical video sequences. In this
implementation, motion estimation is accomplished with a
form of adaptive control grid interpolation (ACGI). Address-
ing the problem from this perspective is new and differs
significantly from other reconstruction protocols that have
been proposed. The primary features that distinguish this new
technique from others are the order and manners in which data
interpolation and segmentation are performed.

2.1. Order of events

In most traditional approaches, segmentation, or the isolation
of particular regions of interest within slices of a medical
image set, is performed prior to reconstruction. Simply put,
features of an anatomical structure are first identified within
each slice and these isolated regions are then connected via
some interpolation function. This order of events is problem-
atic in that any errors introduced during the segmentation
process propagate into the reconstruction. As no segmentation
scheme is perfect in practice, errors will occur regardless of the
methodology employed. For this reason it is advantageous to
perform segmentation last and ensure that segmentation errors
are isolated. This is the order of events followed within the
new reconstruction framework presented here: ACGI is first
used to interpolate data, which are then segmented via shape
element segmentation. The down side of these mechanics is
that there are a greater number of images to be segmented.
However, given the availability of a robust and efficient
automated segmentation algorithm, the ill effects of segment-
ing a larger number of images are minimal.

2.2. Data interpolation

Another component of the new methodology that distin-
guishes it from competing techniques is the mechanism by
which data interpolation is accomplished. As has been
previously discussed, the majority of currently popular
approaches segment first and then connect features of an
anatomical structure from different slices via an interpolation
function. This procedure is flawed in that only the isolated
regions from respective images are used to approximate
missing data between the acquired slices. In any interpolation
problem it is fundamentally advantageous to use all available
information for the approximation of intermediate data. The
approach presented here does exactly that.

Figure 1. Example of raw (a) and ACGI enhanced (b) cardiac MR
data sets. ACGI enhancement produces MR data sets that exhibit
similar resolution to CT.
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Data interpolation is accomplished via ACGI, whereby
motion estimation is used to determine vectors that link the
features of anatomical structures found in different slices. By
interpolating along these vectors it is possible to reconstruct
entire planes of data between the acquired slices. This process
results in an enhanced data set that displays significantly greater
spatial resolution in the out-of-plane direction, as compared to
the original data. Like all interpolation strategies, the ACGI
technique approximates unknown data points based on known
ones. As such, circumstances do arise when interpolated
data deviate from reality. However, because interpolation is
carried out between points from correlated structures, data
approximated via ACGI is more likely to be realistic than data
approximated based on traditional nondirectional approaches.

Evidence in support of this, and a more detailed account
of the mathematics behind ACGI, can be found in a recent
IEEE Transactions on Biomedical Engineering article (18).

Here the entire data set is reconstructed prior to any
segmentation operations. MR data sets enhanced with this
technique resemble CT data in terms of quality. One such data

set is shown in multi-planar reconstruction format in Fig. 1,
where a stack of axially acquired images is being viewed from
the coronal perspective. In addition to presenting a substantial
improvement over raw data, ACGI enhancement compares
favorably with single-image-based interpolation schemes that
are popular in current MPR interfaces. An example of a tri-
linearly interpolated frame, and the corresponding ACGI-
enhanced version, are shown in Fig. 2. Unlike single-image-
based interpolation strategies, ACGI reconstructs entire
intermediate frames and produces a data set consisting of
isotropic voxels throughout. Accordingly, the visualization of
any plane or perspective, or combination thereof, is possible
with consistent high quality. Figure 3 shows an axial-sagittal
combination visualization in (a) and an example of an oblique
plane in (b).

2.3. Segmentation

The way in which segmentation is performed in this new
methodology differs significantly from traditional approaches

Figure 2. Coronal MPR views of an axially acquired MR data set enhanced with (a) trilinear interpolation and (b) ACGI. The former
strategy is popular in current MPR applications.

Figure 3. Visualizations of (a) an axial/sagittal combination and (b) an arbitrarily selected oblique plane from an ACGI-enhanced data set.
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as well. Fundamental techniques such as thresholding, edge-
detection, various forms of region growing, and manual
feature identification remain popular in today’s medical image
processing software packages. Problems that confront such
techniques arise from the aforementioned relationship be-
tween spatial resolution and SNR. Thin slice thicknesses can
be used to avoid undersampling, but compromise SNR.
Alternatively, SNR can be increased by using larger pixel
dimensions, but in-plane resolution is sacrificed. Poorly
defined anatomical boundaries are one manifestation of both
versions of this unavoidable tradeoff. At such locations
intensity and gradient-based thresholding and edge-detection
approaches will be ineffective in completely defining an area
of interest. To address this problem the assumption is made
that the regions where boundaries are incomplete are
localized, and that simple traditional techniques like thresh-
olding and edge detection can be successful in defining much
of a region border.

In the new approach, shape element segmentation, the
incompletely identified borders are used as a scaffold
within which areas of interest are constructed. Because the
border gaps are of limited size when parameters are chosen
appropriately, they prohibit a sufficiently large particle from
escaping the interior of the structure. One can consider the
classical leaky container analogy to illustrate this assumption.
If a leaky container is filled with water, the water seeps
out, leaving the container empty. If, however, larger particles

are used for filling, grains of sand perhaps, the container
remains full.

This simple realization is the fundamental principle behind
shape element segmentation. Using segmentation particles, or
shape elements, larger than border gaps, it is possible to
define the region of interest well. This automated process is
illustrated in Fig. 4 where the shape element bounces within
the intensity-defined scaffold an effectively infinite number of
times to fill the entire area of interest. The use of any shape
element larger than an individual pixel does effectively low
pass filter the vessel border, so it is advantageous to use as
small a shape element as possible in order to retain detail in
the extracted vascular boundary. In practice, a spherical shape
element with a radius of 2.5 pixels is used preferentially, as it
is the smallest element of that configuration that describes a
spherical profile reasonably well. When this element proves
too small and leakage is detected, the element size is
incremented and segmentation is repeated at local regions
surrounding the leakage site. It is also noteworthy that in
execution this procedure is performed as a special case of
region growing to avoid redundant retracing of the vessel
interior. Results have indicated that using a shape element, as
opposed to a single pixel, does not sacrifice segmentation
accuracy at the hands of feasibility given that data sets are of
sufficient resolution. All data sets examined here met this
criterion with pixel dimensions in the submillimeter range.
Even in cases where highly stenotic vessel features were

Figure 4. Frames from segmentation process after (a) five iterations, (b) 15 iterations, and (c) at completion. The light intensity ball
represents the current location of the segmentation particle while the darker gray region represents the area that has been covered by the path
of the particle.

Figure 5. In vitro glass TCPC model used for reconstruction (a), and illustrations of geometric parameters used to validate the ACGI
reconstruction technique: (b) pulmonary artery diameter and (c) connection geometry radius of curvature.
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present, the shape element technique performed well as
reported in another recent study (19).

3. Results

This application was developed in the context of treating
pediatric cardiac malformations. More specifically, analysis of
the Fontan geometry, surgically created to treat single ventricle
congenital heart defects, was focused upon. Accordingly, the
in vitro models used to validate the ACGI reconstruction
methodology were designed to mimic the anatomical district
modified by the Fontan operation. One such model, of a total
cavopulmonary connection (TCPC), is shown in Fig. 5(a). The
in vivo examples of ACGI reconstruction that are shown later
in this section are from Fontan cases and pediatric patients
with other cardiovascular disorders.

3.1. In vitro validation

MR scans of the Fontan model were conducted and the ac-
quired data were reconstructed using the ACGI methodology
and two other competing techniques: morphology-based
linear interpolation and contour-based cubic spline inter-
polation (6,13). These approaches have been used to address

Table 1. Quantitative results from in vitro reconstruction validation

Original ACGI Spline Linear

PA Diameter (mm) 13.59 13.72 13.69 12.36
% Error N/A 0.96% 0.74% 9.05%
Radius of
curvature (mm)

7.92 8.06 9.03 7.46

% Error N/A 1.77% 14.02% 5.81%

Figure 6. Right sagittal view of a total cavopulmonary connection
from a dextracardiac patient. This Fontan geometry is atypical in
that a large superior vena cava and connection region are observed
in comparison to the much smaller inferior vena cava.

Figure 7. Coronal view of a rare bilateral superior vena cava Fontan
configuration with one superior cava connecting to the inferior vena
cava via a bulbous coronary sinus.

Table 2. Example parameters from MR data
acquisition

Parameter Setting

Pulse sequence True fisp
TR 166 ms
TE 1.59 ms
FOV 150 mm
Slice thickness 3 mm
Distance factor 0
Matrix 100 � 128
NEX 3
Segments 29
Trigger delay 334 ms
Number of slices 45
Rectangular FOV 80%
Acquisition window 500
Flip angle 90 degrees
Echo spacing 3.2 ms
Partial phase fourier 0
Bandwidth 1220 hz/px
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the reconstruction problem frequently in recent literature
(4, 8, 11, 20, 21). Reconstruction results were compared
based on two geometric parameters of the Fontan model
known to contribute significantly to fluid dynamics, connec-
tion geometry radius of curvature, and pulmonary artery
diameter. Specifically, these parameters from the recon-
structed models were compared to the same parameters from
the originally scanned model. These two characteristics are
highlighted in Fig. 5(b) and 5(c).

Connection geometry radius of curvature measurements
were taken for each of the four transition regions and
averaged. Pulmonary artery diameter measurements were
taken at each of the model outlets and these numbers were
averaged as well. The results of the validation affirm that
ACGI reconstruction performs with higher quality than either

competing method. The error values associated with each
reconstruction are given in Table 1. Repeatability was es-
tablished by performing reconstruction 100 times for each
case, and individual trial results were averaged to yield the
results in Table 1. In addition to the measures listed in Table 1,
the ACGI-reconstructed model varied from the original by
less than 4% in terms of pulmonary artery diameter at any
cross-section, and by less than 6% in terms of total TCPC
model volume.

3.2. In vivo results

Following validation, approximately 50 cardiovascular struc-
tures were reconstructed. Several examples of these recon-
structions are shown in Figs. 6–8. These visualizations are of

Figure 8. Shaded surface representation (a), maximum intensity projection model (b), and ACGI reconstruction (c) and (d) of a rare
corkscrew aortic configuration. Both (a) and (b), taken directly from a major manufacturer’s reconstruction package, were produced
from data acquired using gadolinium, while (c) and (d) were created from images acquired with a standard pulse sequence and without
any contrast agents. In (d) a superior perspective cutaway highlights the visualization versatility inherent to models created with the
new methodology.
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stereo lithography (STL) files created from the reconstructed
data sets with in-house code written in Matlab (22). The files
are visualized in Magics Communicator, a stand-alone STL
viewer (23). In some cases, reconstructions produced by
major MR hardware manufacturer packages were also
available. One comparison of a maximum intensity projection
and a shaded surface representation to an ACGI reconstruc-
tion is provided in Fig. 8. All of the ACGI reconstructions
presented here were created from data acquired with standard
pulse sequences and without contrast agents. More specifi-
cally, either True FISP (Siemens, New York, NY) or Fiesta
(GE, Waukesha, WI) sequences were used in all cases. An
example set of scan parameters are provided in Table 2
for reference.

In Fig. 8 the corkscrew aorta reconstructions reveal the
shortcomings of two popular approaches. The maximum
intensity projection clearly suffers from poor resolution and a
lack of segmentation, while the shaded surface representation
suffers from poor segmentation as well and also the effects of
undersampling where jagged edges are observed. It is note-
worthy that both (a) and (b) were created using data from a
gadolinium-enhanced magnetic resonance angiography (MRA)
scan, while the reconstruction in (c) and (d) was produced from
data acquired with a standard pulse sequence and without the
use of any contrast agents.

In addition to the improvements that are clear from a static
image, the combined use of ACGI and shape element
segmentation produces more complete information that can
be viewed and manipulated interactively with consistent high
quality. This includes simple perspective manipulations as
well as more advanced visual operations. In Fig. 8(d) a su-
perior perspective cutaway is showcased, allowing focused
analysis and accurate dimensional quantification of the cork-
screw region.

4. Discussion

The concept of data reconstruction is not new and many
techniques have been proposed for the transition of two-
dimensionally sampled data into three dimensions. The
majority of these techniques suffer due to segmentation and
resolution problems. The approach taken in this work
addresses both concerns. Adaptive control grid interpolation
is used to enhance out-of-plane spatial resolution in acquired
data sets and shape-element segmentation is used to isolate
regions of interest. In validations, the combination of these
techniques performed with superior quality in comparison to
other state-of-the-art methods from recent literature. Addi-
tionally, the results presented here compared favorably from
a qualitative standpoint to examples produced by major
manufacturer MPR and reconstruction packages.

The primary thrust of this paper is to demonstrate a
reconstruction methodology that represents a fundamental
technical advancement. However, there are a number of

noteworthy implications in terms of practicality as well. All of
the reconstructed morphologies presented, except those
included as counterexamples, were created based on data
acquired with True FISP (Siemens, New York, NY) and
Fiesta (GE, Waukesha, WI) pulse sequences. These sequences
can be executed more quickly than alternatives, and do not
demand contrast agents or the clinical assistants required to
administer them. Accordingly, the scans used for reconstruc-
tion here can be performed in less time, with less risk, and at a
lower cost. Furthermore, since the aforementioned pulse
sequences capture the anatomy within each slice at various
points over the course of the heart cycle, reconstruction via
the proposed means can create dynamic time-varying
morphological models that pulse with blood flow. MRA, in
contrast, provides only a single static representation of a
vascular structure at a lone point in time.

Though the components defining the methodology pre-
sented here are most powerful when combined, each offers
benefits on an individual basis as well. Data sets interpolated
with ACGI provide significantly higher quality for MPR
applications in comparison to bilinear and bicubic interpola-
tion kernels. Several additional characteristics of shape
element segmentation are also noteworthy, especially in the
context of vascular imaging. First, the ‘‘inside out’’ approach
allows the characterization of the interior of the vessel
wall, which is where the interesting and significant structural
features are located with respect to blood flow. Next, the
approach eliminates the need to strip away layers of material
corresponding to contiguous structures outside of the vessel
that appear connected based on intensity. This is a feature of
simpler region growing and watershed strategies as well, but
the shape element development improves on these by
prohibiting the segmented region from jumping out of the
vessel to areas of similar intensity.

Complex three-dimensional anatomies like those found in
patients with atypical cardiac disorders are often extremely
intricate and complicate the fundamental problem of
reconstruction. Modeling such anatomies based on two-
dimensional image samples has proven problematic for
traditional means. However, these cases are no less important
than the simpler ones, and must be addressed successfully.
The combination of ACGI and shape-element segmentation
creates a more robust solution to the problems posed by
complex morphologies, and establishes a valuable anatomic
modeling tool for vascular surgical planning and other cardiac
MRI applications.
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