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ABSTRACT

In this study, porcine carotid arteries were subjected to balloon overstretch injury followed
by local delivery of paramagnetic nanoparticles targeted to αvβ3-integrin expressed by smooth
muscle cells or collagen III within the extracellular matrix. Carotid T1-weighted angiography and
vascular imaging was performed at 1.5T. While MR angiograms were indistinguishable between
control and targeted vessel segments, αvβ3-integrin-and collagen III-targeted nanoparticles
spatially delineated patterns and volumes of stretch injury. In conclusion, MR molecular imag-
ing with αvβ3-integrin or collagen III-targeted nanoparticles enables the non-invasive, three-
dimensional characterization of arterial pathology unanticipated from routine angiography.

INTRODUCTION

Magnetic resonance (MR) molecular imaging is emerging as
an important technique for noninvasively assessing atheroscle-
rotic vascular disease (1–3). While fluoroscopic-guided angiog-
raphy and interventions are the dominant approaches used for
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revascularization, MRI–based techniques are in rapid devel-
opment and beginning to gain acceptance. Angiographic ap-
proaches alone poorly define plaque pathology and do not delin-
eate the extent of mural injury imparted by angioplasty. Despite
marked improvements in revascularization techniques and de-
vices, restenosis persists as a serious complication, which is
at least partially dependent upon the inflammatory character
of atherosclerotic plaque (4–14) and the impact of mechani-
cal stress imparted by balloon injury (15, 16). MR molecular
imaging probes infused locally into the balloon injured wall
offer the potential to concomitantly delineate interventional in-
jury patterns and characterize biochemical features exposed in
the plaque at the time of intervention.

We have developed a lipid perfluorocarbon nanoparticle plat-
form technology, which can be coupled to ligands and allows the
specific targeting of biochemical epitopes (17). These nanopar-
ticles are inherently echogenic (18) when bound to surfaces and
can be modified for compatibility with MR (19), x-ray (20), or
nuclear imaging (21). Ligand-targeted nanoparticles have been
used for systemic vascular imaging of thrombosis (17) and an-
giogenesis (3, 22). Although nanoparticles are normally steri-
cally precluded from reaching extravascular biomarkers, they
can readily penetrate the vessel wall following stretch-injury.
In prior experiments, tissue factor (TF) expressed by smooth
muscle cells was targeted (23, 24), but unfortunately, the delay
required for up regulation of TF on cell surfaces and a prolonged
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incubation used in those studies are incompatible with real-time
phenotypic characterization and clinical application.

In this study, we evaluated the potential of ligand-targeted
paramagnetic nanoparticles to detect αvβ3-integrin, constitu-
tively expressed by smooth muscle cells or native collagen III
within the extracellular matrix of carotid arteries immediately
after balloon injury. Three-dimensional reconstruction was uti-
lized to compare balloon injury patterns determined by molecu-
lar imaging of cellular versus extracellular epitopes. In addition,
the relative intramural MR contrast enhancement achieved with
the two molecular imaging targets was compared.

METHODS

Preparation of targeted nanoparticles

Ligand-targeted paramagnetic nanoparticles were prepared
as previously described (17, 25). Briefly, the nanoparti-
cles comprised 20% (volume/volume) perfluorooctylbromide
(PFOB; Exfluor Research, Round Rock, TX, USA) and 1.5%
(weight/volume) of a surfactant co-mixture, 1.7% (w/v) glyc-
erin and water for the balance. The surfactant co-mixture in-
cluded 69.9 mole% lecithin (Avanti Polar Lipids, Inc., Al-
abaster, AL, USA), 0.1 mole% peptidomimetic vitronectin
antagonist (26–28) (Bristol-Myers Squibb Medical Imag-
ing, Billerica, MA, USA) or anti-collagen III f(ab) (28,
29) (CSIRO, Victoria, Australia) coupled to MPB-PEG2000-
phosphatidylethanolamine (Northern Lipids, Inc., Vancouver,
British Columbia, Canada), and 30 mole% of gadolin-
ium diethylene-triamine-pentaacetic acid-bis-oleate (Gateway
Chemical Technologies, St. Louis, MO, USA). Nontargeted,
paramagnetic particles were prepared by substituting the ligand-
lipid conjugate with lecithin. The nominal sizes for each
formulation were measured with a submicron particle ana-
lyzer (Malvern Zetasizer, Malvern Instruments, Malvern, PA,
USA) and were 245 nm ± 117 nm for the αvβ3-targeted,
262 nm ± 99 nm for the collagen III-targeted, and 323 nm ±
26 nm non-targeted control nanoparticles.

Preparation of targeted fluorescent
nanoparticles

AlexaFluor 488-labeled nanoparticles were produced by in-
clusion of 0.5 mole% AlexaFluor 488 coupled to caproyl-
phosphatidylethanolamine. AlexaFluor 488-caproyl-phospha-
tidylethanolamine was synthesized by dissolving 7.8 µmole
AlexaFluor 488 carboxylic succinimidyl ester (Molecu-
lar Probes, Carlsbad, CA, USA) in 1.4 mL dimethylfor-
mamide and mixing it with 10 µmole caproylamine phos-
phatidylethanolamine (Avanti Polar Lipids, Alabaster, AL,
USA) in 200 µL chloroform at 37◦C for one hour. Follow-
ing addition of 200 µL of chloroform, reaction temperature
was increased to 50◦C and continued overnight. TLC us-
ing a reverse phase hydrocarbon (C18) impregnated silica gel
and a mobile phase consisting of 0.1M sodium acetate buffer
(pH5.6):methanol:water at a ratio of 20:100:200 was performed
to monitor and purify the conjugated product from the uncou-

pled AlexaFluor dye. The red fluorescent lipid was recovered at
the origin, extracted with chloroform:methanol (3:1) and evap-
orated to dryness until use.

Animal studies

All studies were approved by the Washington University An-
imal Studies Committee and are based on National Institutes of
Health laboratory standards. Healthy domestic pigs weighing
20 kg were fed a normal diet (n = 12). Animals were fasted
overnight before sedation with telazol cocktail (1 mL/23 kg
IM) followed by intubation and 1–2% isoflurane anesthesia
in oxygen. The ECG, blood gases and arterial blood pressure
were monitored. A 12F (size necessary to fit the double-balloon
catheter during incubation) catheter sheath was aseptically in-
serted into the femoral artery via a cut-down and a bolus of hep-
arin (200 U/kg) was given to inhibit clot formation in catheters.
No antiplatelet agents were administered. A guide catheter was
placed under fluoroscopy into the left or right carotid artery at
the level of the 5th cervical vertebra. A baseline carotid an-
giogram was obtained and lidocaine and nitroglycerin were
used to treat vasospasm. An 8 mm × 2 cm balloon catheter
(Proflex, Mallinckrodt Inc, St. Louis, MO, USA) was positioned
at the level of the 2nd and 3rd cervical vertebrae and inflated
three times to a pressure of 6 atmospheres for 30 seconds with
60 second pauses between inflations. A balloon-to-artery ratio
of approximately 1.5 was employed. This procedure produces a
consistent rupture of the internal elastic lamina and injury to the
media (31, 32).

Following carotid overstretch-injury, nanoparticles were ad-
ministered via a local delivery with a double-balloon catheter
system (Edwards Lifesciences, Irvine, CA, USA). The 7F double
balloon catheter was inserted via the sheath in the right femoral
artery and guided into the respective carotid artery. The inner
distance between the distal and the proximal balloons was 6 cm.
Under fluoroscopy, the catheter was placed in a fashion that the
injured vessel segment was positioned in the middle between the
two balloons. The site of injury had been marked both on x-ray
and on the overlying skin during the injury. Upon satisfactory
confirmation of the double-balloon catheter position, the prox-
imal and then distal balloons were each gently (1 atm) inflated
to occlude the artery. Blood was aspirated through the central
porthole, and the arterial segment flushed with normal saline.
Targeted nanoparticles (n = 9 for αvβ3-integrin and n = 6 for
collagen III) or non-targeted control nanoparticles (n = 3; into
the contralateral artery), or saline alone as control (n = 6) were
delivered locally and allowed to incubate for 10 minutes. The so-
lutions were then withdrawn from the vessel and segment flushed
thoroughly with saline before carotid flow was reestablished. A
post-angioplasty carotid angiogram was obtained, and the ani-
mals were transferred for MR imaging of the neck vasculature.

Magnetic resonance imaging
and NMR analysis

Animals were imaged with MRI using a 1.5 Tesla clinical
scanner (NT Intera CV, Philips Medical Systems, Cleveland,
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Figure 1. (A) Time-of-flight angiogram depicting blood flow in the carotid arteries of domestic pigs following balloon overstretch injury (femoral
approach) and exposure to αvβ3-integrin targeted nanoparticles (left) or non-targeted nanoparticles as control (right). T1-weighted black blood
MR images of carotid arteries exposed for 10 minutes locally to paramagnetic nanoparticles covalently coupled to either (B) peptidomimetics
targeted to αvβ3-integrin or (C) collagen III F(ab) fragments. T1-weighted MRI at 1.5 T.

OH, USA) and techniques optimized to assess persistence of
contrast enhancement and in vivo luminal dimensions through-
out the injured vessels. A 5-element phased array surface coil
operating in the receive mode was used. Multislice T1-weighted,
gradient-echo, fat-suppressed, time-of-flight angiograms of the
carotid arteries from the carotid origin to the bifurcation into ex-
ternal and internal carotid were performed with repetition times
(TR) of 40 ms and echo times (TE) of 4.6 ms. T1-weighted,
fat-suppressed, fast spin-echo (TSE) imaging was performed to
image the vascular wall (TR = 532 ms, TE = 11 ms, 250 ×
250 µm in-plane, 2 mm slice thickness, echo train = 4, num-
ber of signals averaged = 8). To ensure complete nulling of the
blood signal, “sliding” radiofrequency saturation bands were
placed proximal and distal to the region of image acquisition
and moved with the selected imaging plane. Contrast to noise
between the nanoparticles and surrounding tissue was calculated
as the difference of the signal between the nanoparticle targeted
area and a region of interest within the surrounding tissue, re-
spectively, divided by the standard deviation of the background
signal (33). Contrast image analysis was performed with Easy
Vision v5.1 (Philips Medical Systems, Cleveland, OH, USA)

using regions of interest manually applied in each slice of the
T1-weighted baseline images. The segmented slices were recon-
structed into a three-dimensional object to calculate the volume.

Histology and immunohistology

Carotid vessels were excised for determination of arterial wall
morphology and immunohistology. Frozen (OCT) segments
from the injured vessels were sectioned every 7 microns and
stained with hematoxylin and eosin (H&E), Masson’s trichrome,
Verhoeff-van Gieson for elastic tissue, and oil-red O for lipids.
Microscopic images were obtained with a Nikon E800 micro-
scope using a Nikon DXM 1200 digital camera connected to a
Dell Dimension 4100 computer (Round Rock, TX) using Nikon
ACT-1 image capture software (Nikon Inc., Melville, NY). His-
tomorphometric measurements of lumen, intima, media, and to-
tal vessel area were obtained. Immunohistology included detec-
tion of αvβ3−integrin (LM-609, Chemicon Int., Temecula, CA,
USA) and collagen III (AB757P, Chemicon Int., Temecula, CA,
USA). Vectastain Elite avidin-biotin complex method kits were
used (Vector Laboratories, Burlingame, CA, USA).

Figure 2. (A) αvβ3-integrin detected in the media after incubation with fluorescent PFC nanoparticles targeted against this integrin. (B) Exposure of
contralateral artery to non-targeted PFC nanoparticles yields no specific immunofluorescence in the media. Both arteries exhibit auto-fluorescence
in the adventitia and endothelium.
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Statistical analysis

All quantitative data were analyzed with SAS (Cary, NC,
USA) using general linear models and other descriptive statis-
tics. Differences between means were declared significant at
p < 0.05 and b = 0.80.

RESULTS

During MR scanning, T1-weighted black blood images were
obtained to evaluate vascular injury, and MR angiograms were
obtained to assess luminal patency. No evidence of luminal nar-
rowing was appreciated and time-of-flight carotid angiograms
were indistinguishable between the targeted and contralateral
control vessel segments (Fig. 1A). These results were consis-
tent with X-ray contrast angiograms obtained immediately post
procedure and before animal transfer to the MR suite.

Both biomarkers, collagen III and αvβ3-integrin, were ex-
posed by stretch fracture of the carotid wall and were avail-
able immediately after injury for MR molecular imaging. The
three dimensional contrast patterns established with collagen III
and αvβ3-integrin molecular imaging were similar (Fig. 1B, C)
and indicated that both biomarkers were generously distributed
throughout the vessel wall. The resultant contrast pattern re-
flected the asymmetric pattern of injury imparted to the me-
dia and adventia by balloon overstretch shear forces, since the
particles are otherwise sterically precluded from deep penetra-
tion into the extracellular matrix. Non-targeted nanoparticles
and saline treatment produced no MR contrast enhancement
and provided no information about the extent of mural injury.
Successful targeting of intravascular epitopes was corroborated
by histology using immunofluorescence in independent exper-
iments where carotid arteries were incubated with fluorescent
PFC nanoparticles targeted against the αvβ3-integrin (Fig. 2).

MR signal enhancement for the nanoparticle targeted vessel
segments was intense and easily allowed for the determination
of injury morphology. The contrast to noise ratio (CNR) be-
tween the αvβ3-integrin targeted nanoparticles and the surround-
ing arterial tissue measured with T1-weighted, fat-suppressed,
fast spin-echo (TSE) imaging was 13.8 ± 5.2, whereas the col-
lagen III targeted nanoparticles provided a CNR of 3.3 ± 0.3
(p < 0.05; Fig. 3A). The difference in contrast presumably re-
flected the relative density of the biomarkers accessible to the
nanoparticles within the wall and or differential probe avidity.
The peptidomimetic ligand is small, with a molecular weight of
∼1050 d, whereas the collagen III f(ab) fragment has a mass of
approximately 50,000 d. As a result, the αvβ3-integrin nanopar-
ticles presented 250 to 300 homing ligands per particle while
the collagen III nanoparticles had 25 to 50 f(ab) fragments per
particle. Clearly the αvβ3-integrin nanoparticles have a potential
binding advantage that was minimized by locally infusing both
nanoprobes at receptor-saturating concentrations.

The length of injury determined in all vascular segments ex-
posed to αvβ3-integrin nanoparticles was 31 mm ± 5 mm, which
was similar (p > 0.05) for the collagen III targeted carotids
(30 mm ± 4 mm). In both cases, the length of injury exceeded the

(a)

(b)

(c)

Figure 3. (A) Contrast to noise ratio for αvβ3-integrin and colla-
gen III targeted nanoparticle emulsions (∗p < 0.05). (B) Length of
vascular injury as determined by MRI. (C) Quantitation of injury
volume. T1-weighted MRI at 1.5 T. None of the controls (vessels
incubated with non-targeted nanoparticles or saline) displayed de-
tectable signal for MR imaging.

actual balloon length (20 mm) by 50% (Fig. 3B). The absolute
volume of vascular injury computed from the three-dimensional
reconstructions of the contrast-segmented vessels did not differ
(p > 0.05) between the αvβ3-targeted (955 mm3 ± 234 mm3)
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Figure 4. Volume-rendered image consisting of a 3-D MR angiogram co-registered with T1 enhancement in the wall of carotid arteries of a do-
mestic pig following angioplasty and exposure to αvβ3-targeted paramagnetic nanoparticles. Depiction of αvβ3-targeted contrast (golden; arrows)
in the vascular wall. Frames at different angles detailing the asymetry and morphology of balloon overstretch injury pattern. MR angiography:
TR 16 ms, TE 3.5 ms, a 60. MR vascular wall image: T1-weighted MRI at 1.5 T, black-blood fast SE, TR 540 ms, TE 11 ms, a 90.

and collagen III targeted (903 mm3 ± 218 mm3) arteries
(Fig. 3C).

Histology of the carotid arteries showed irregular loss of
endothelium and disruptions in the media and internal elastic
lamina propria as well as fractures reaching into the adventi-

tia. Morphometric analyses from pigs treated with αvβ3-integrin
targeted, collagen-III targeted, non-targeted nanoparticles, or
saline were not significantly different. The presence and distri-
bution of αvβ3-integrin and collagen III expression in the media
were confirmed histologically (Fig. 5).

Figure 5. Representative cryosections from carotid arteries harvested immediately after MRI. Upper row: Hematoxylin eosin stains of uninjured
versus balloon overstretch injured vessel. Lower row: αvβ3-integrin (LM-609) and collagen III (AB757P). S/p = status post, L = vascular lumen,
M = media, A = adventitia, arrows point at molecular markers.
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DISCUSSION

In the current experiments, we have established that param-
agnetic nanoparticles can be used to target important biosigna-
tures in the extracellular matrix or expressed on cell surfaces
following balloon overstretch injury. In contrast to conventional
angiography, which delineates vascular filling defects, these
nanoparticles are capable of infiltrating the vessel wall through
the fissures created by balloon overstretch injury and then
binding to epitopes within the vessel wall thereby delineat-
ing the wall morphology. This unique MR-based technol-
ogy could permit in situ physiological characterization of
atherosclerotic plaques immediately after injury, which may fa-
cilitate individualized therapy decisions based on injured plaque
pathology.

In the present study, we sought to establish the feasibility of
targeting two types of epitopes (extracellular vs. cell membrane)
and to compare their efficacy. Both the extracellular matrix tar-
get collagen III and the smooth muscle cell membrane epitope
αvβ3-integrin were generously distributed and bioavailable for
binding. Interestingly, the αvβ3-integrin targeted nanoparticles
produced a four-fold greater contrast signal relative to the wall
than the collagen III targeted agent. This suggests a higher re-
tention of the integrin-targeted agent, which may be due in part
to differences in the number of binding sites exposed or avail-
able to the particulate probe. Although the surface presentation
of ligands varied considerably between the two formulations
due to molecular weight differences, it is likely that this effect
was minimized by administering saturating concentrations of
nanoparticles into the wall.

Importantly, despite the difference in contrast signal relative
to wall, both nanoparticle formulations provided adequate im-
age quality, and there was no difference in the ability to analyze
lesion length, three-dimensional geometry, and volume. Thus,
both collagen III targeted and αvβ3-integrin targeted nanopar-
ticles equivalently delineated vascular wall stretch-injury pat-
terns. These data illustrate the ability of MR molecular imaging
probes to supplement the characterization of vascular pathol-
ogy beyond luminal dimensions with biochemical and mechan-
ical injury data in a timely fashion. An incubation time of
10 minutes was chosen in the current study to achieve ad-
equate exposure of injured media to the nanoparticle emul-
sion. In the future, delivery devices such as porous balloons
may be chosen to minimize or eliminate vascular occlusion
times while delivering the nanoparticles into the injured vascular
wall.

Despite major advancements afforded by drug-eluting stents,
a significant subset of patients and lesions remain in which
restenosis or thrombosis is still prevalent. The potential to de-
velop clinical restenosis after vascular injury is influenced by
the mechanical shear forces of angioplasty and the underlying
biochemical character of the atheroma. Many investigators have
demonstrated the influence of mechanical shear force created
by balloon injury on the stimulation of biochemical and in-
tracellular signaling processes, which contribute to restenosis
(8, 13, 15, 34). Recurrent unstable angina and restenosis may

also depend upon the overall inflammatory status of the plaque,
which can vary considerably among lesions and patients. His-
tological analysis of coronary plaque atherectomy specimens
have demonstrated that increased atheroma inflammation, sug-
gested by larger infiltrations of macrophages and T-cells, was
related to recurrent unstable angina and that the concentra-
tion of macrophages was an independent predictor of resteno-
sis (8). Ligand-directed paramagnetic nanoparticles may allow
real-time pathologic characterization of the injured atheroma,
which could be predictive of recurrent symptoms after angio-
plasty and may provide a convenient drug-delivery vehicle for
individualized therapy (35).

CONCLUSION

In contradistinction to conventional angiograms, which de-
lineate patency of vasculature, MR molecular imaging nanopar-
ticles provide an assessment of the spatial distribution of both
cell surface and extracellular matrix biomarkers. The quantita-
tive measurements of three-dimensional balloon injury pattern
and the prevalence of pathologic biomarkers may provide prog-
nostic information at the time of intervention undetectable today.
MR molecular imaging could reveal unique assessments and al-
low individualized revascularization strategies.
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